A06 Correlation Assignment

Name: Max Hodgen

Grade = out of 14 points

SET A	
	1 st Semester
Hours/day using	Grade in
Cell Phone	English (out of
	100)
0.5	89.0
5.7	68.0
3.1	75.0
2.7	79.0
0.5	97.0
2.4	82.0
2.8	78.0
6.0	37.0
5.6	71.0
4.9	71.0
3.8	77.0
2.6	85.0
1.8	80.0
2.0	84.0
3.0	75.0
7.0	45.0
5.8	60.0
4.5	72.0
1.5	93.0
0.5	79.0
3.0	74.0
2.1	82.0

<u>Part 1</u> -

a. For the data in SET A, use Minitab to calculate the correlation coefficient ("r") for the relationship between the two variables. Copy and Paste the Sessions Window below.

Sessions Window: (1 point)

```
Pearson correlation of Cell Phone Usage (Hours/Day) and
English % Grade = -0.856
P-Value = 0.000
```

b. Although the scatter plot is a visual aid and *not* a *statistical test*, it is still very useful in getting a better "picture" of the data In Minitab, use "Graph" to create a scatterplot of the data in SET A. Copy and paste the scatterplot in the space below. (2 points)

c. Describe the relationship between the two variables by using:

The calculated value of "r" (correlation coefficient), The p-value, The names of the variables, and

What is shown on the scatterplot? (4 points)

The scatter plot visually shows a trend that student's English grades go up as their cell phone usage decreases. The correlation coefficient between cell phone usage and English grades is a -0.856, which means there is a strong to extremely high inverse relationship. As cell phone usage increases the student's English grade decreases. Also, with a p-value of 0.00 there is less than a 1% probably that the correlation was a result of random variation.

Part	Π	-
Part	Ш	-

Weight of Plant (g.)
30
50
46
35
42
51
41
46
30
32
30
35
32
18
25
24
28

a. For the data in SET B, use Minitab to calculate the correlation coefficient ("r") for the relationship between the two variables. Copy and Paste the Sessions Window below.

Sessions Window: (1 point)

Pearson correlation of Total Hours of Sunlight and Weight of Plant (g.) = 0.537P-Value = 0.026

b. In Minitab use, "Graph" to create a scatterplot of the data in SET B. Copy and paste the scatterplot in the space below. (2 points)

c. Describe the relationship between the two variables by using:

The calculated value of "r" (correlation coefficient), The p-value, The names of the variables, and What is shown on the scatterplot? (4 points)

The scatter plot shows a bit of a trend that the weight of a plant increase as the plant's sunlight exposure also increases. The correlation coefficient between the two variables is 0.537, showing a moderate direct relationship. The low p-value of 0.026 means there is over a 97% probably that the r value is a true correlation.